The endosymbiosis-induced genes ENOD40 and CCS52a are involved in endoparasitic-nematode interactions in Medicago truncatula.

نویسندگان

  • Bruno Favery
  • Arnaud Complainville
  • Jose Maria Vinardell
  • Philippe Lecomte
  • Danièle Vaubert
  • Peter Mergaert
  • Adam Kondorosi
  • Eva Kondorosi
  • Martin Crespi
  • Pierre Abad
چکیده

Plants associate with a wide range of mutualistic and parasitic biotrophic organisms. Here, we investigated whether beneficial plant symbionts and biotrophic pathogens induce distinct or overlapping regulatory pathways in Medicago truncatula. The symbiosis between Sinorhizobium meliloti and this plant results in the formation of nitrogen-fixing root nodules requiring the activation of specific genes in the host plant. We studied expression patterns of nodule-expressed genes after infection with the root-knot nematode Meloidogyne incognita. Two regulators induced during nodule organogenesis, the early nodulin gene ENOD40 involved in primordium formation and the cell cycle gene CCS52a required for cell differentiation and endoreduplication, are expressed in galls of the host plant. Expression analysis of promoter-uidA fusions indicates an accumulation of CCS52a transcripts in giant cells undergoing endoreduplication, while ENOD40 expression is localized in surrounding cell layers. Transgenic plants overexpressing ENOD40 show a significantly higher number of galls. In addition, out of the 192 nodule-expressed genes tested, 38 genes were upregulated in nodules at least threefold compared with control roots, but only two genes, nodulin 26 and cyclin D3, were found to be induced in galls. Taken together, these results suggest that certain events, such as endoreduplication, cell-to-cell communication with vascular tissues, or water transport, might be common between giant cell formation and nodule development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula.

In eukaryotes, diverse mRNAs containing only short open reading frames (sORF-mRNAs) are induced at specific stages of development. Their mechanisms of action may involve the RNA itself and/or sORF-encoded oligopeptides. Enod40 genes code for highly structured plant sORF-mRNAs involved in root nodule organogenesis. A novel RNA binding protein interacting with the enod40 RNA, MtRBP1 (for Medicago...

متن کامل

Endoreduplication mediated by the anaphase-promoting complex activator CCS52A is required for symbiotic cell differentiation in Medicago truncatula nodules.

In Medicago nodules, endoreduplication cycles and ploidy-dependent cell enlargement occur during the differentiation of bacteroid-containing nitrogen-fixing symbiotic cells. These events are accompanied by the expression of ccs52A, a plant ortholog of the yeast and animal cdh1/srw1/fzr genes, acting as a substrate-specific activator of the anaphase-promoting complex (APC) ubiquitin ligase. Beca...

متن کامل

Medicago truncatula plants overexpressing the early nodulin gene enod40 exhibit accelerated mycorrhizal colonization and enhanced formation of arbuscules.

The mutualistic symbiosis between flowering plants and arbuscular mycorrhizal fungi is extremely abundant in terrestrial ecosystems. In this symbiosis, obligately biotrophic fungi colonize the root of the host plants, which can benefit from these fungi by enhanced access to mineral nutrients in the soil, especially phosphorus. One of the main goals of research on this symbiosis is to find plant...

متن کامل

Medicago truncatula ENOD40-1 and ENOD40-2 are both involved in nodule initiation and bacteroid development.

The establishment of a nitrogen-fixing root nodule on legumes requires the induction of mitotic activity of cortical cells leading to the formation of the nodule primordium and the infection process by which the bacteria enter this primordium. Several genes are up-regulated during these processes, among them ENOD40. Here it is shown, by using gene-specific knock-down of the two Medicago truncat...

متن کامل

LIN, a Medicago truncatula gene required for nodule differentiation and persistence of rhizobial infections.

Ethyl methanesulfonate mutagenesis of the model legume Medicago truncatula has previously identified several genes required for early steps in nodulation. Here, we describe a new mutant that is defective in intermediate steps of nodule differentiation. The lin (lumpy infections) mutant is characterized by a 4-fold reduction in the number of infections, all of which arrest in the root epidermis,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular plant-microbe interactions : MPMI

دوره 15 10  شماره 

صفحات  -

تاریخ انتشار 2002